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The stress-strain state in the neighbourhood of the front of a plane crack at the interface of two dissimilar half-spaces of ideally 
elastic isotropic materials is investigated. The form of the asymptotic expansions of the projections of the displacement vector 
onto the axis, d~rected along the tangent, the principal normal and the binormal to the crack contour is obtained. It is shown 
that asymptotic expansions of the projections of the displacement vector onto directions corresponding to the tangent and principal 
normal, beginning with the second-order term of the expansion, include both terms with half-integer and complex powers of the 
distances to the crack contour. This indicates that these projections of the solutions of the three-dimensional problem have 
singularities, defined by the solutions of both the annplane and plane strain problems of cracks at the interface of materials. The 
singularities of the projection of the displacement vector on to the binormal correspond to the singularities of the solution of 
the plane strain problem. © 2002 Elsevier Science Ltd. All rights reserved. 

1. F O R M U L A T I O N  OF T H E  P R O B L E M  

Suppose a crack occupies the region G in the z = 0 plane of an unbounded elastic space. We will assume 
that the boundary ~G of the region G is an infinitely smooth curve. Poisson's ratio and the shear modulus 
are equal to vl and B1 for the upper half-space (z > 0) and v2 and ~t2 for the lower half-space (z < 0), 
respectively. In the z = 0 plane, outside the crack G, it is assumed that the conditions of strong adhesion 
between the half-planes are satisfied, i.e. 

uO) (x , y ,O)=u t2 ) ( x , y ,O) ,  f fO)(x ,y ,O)=(Y~2f(x ,y ,O)  3j 

j =  1, 2, 3; (x,y) ~ G 

a(k) (x  0) the components of the Here u(k)(x, y, 0) (k = 1, 2) are the displacement vectors and 3j ~ , Y, are 
stress tensor; the superscript (1) denotes the upper half-space and the superscript (2) the lower half- 
space. 

In the neighbourhood of an arbitrary point (x', y', 0) • OG we will introduce a local system of 
coordinates, defined by the directions of the tangent, the principal normal and the binormal to OG at 
this point. The components of the displacement vector in these directions will be denoted by u (k) u (k) .~ tan' nor, 
u~ k~, respectively. As is well known, linear fracture mechanics is based on an analysis of the principal 
terms of the asymptotic expansions of the singular components of these components of the displacements 
in the neighbourhood of thc crack front. Nevertheless, in many cases it is useful to know not only the 
principal terms of the expansion but also the form of the whole asymptotic series, or at least some of 
its next terms. The need for such additional information arises, for example, when constructing a closed 
system of formulae of the variation of the solution of the problem, due to the variation of the crack 
contour (see [1]), when refining numerical solutions in the neighbourhood of the crack front and when 
constructing refined fracture criteria. Hence the purpose of this paper is to investigate the complete 
form of the asymptotic expansion of the components of the displacements u (k) u (k) ,,(k) in the vicinity tan' n o r , ~ 3  
of the point (x', y', 0) when the point (x, y, z) considered are situated in the plane that passes through 
the point (x', y', 0) and is normal to ~G at this point. 

At first glance it might seem that the solution of this problem is fairly simple, since the expansion of 
the solutions of the antiplane and plane strain problems of interface cracks are well known, while the 
forms of the expansions of Ulka~ and (U~o)r , ut k)) should be identical, as can be assumed, with the forms 
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of the expansions of the corresponding antiplane and plane strain problems. However, this assumption 
is incorrect. 

As is well known, the solution of the antiplane problem of an interface crack in the vicinity of its tip 
can be represented in the form (henceforth summation is everywhere carried out from n = 0 to 
n - - - - - ~ )  

+1 , , 
. (k) = y. r n ~ f£(k ) (~p)+~rnh(k} ( lp )  ' k = 1,2 (1.1) Uant 

Here r is the distance to the crack tip and q0 is the polar angle, where q0 = n corresponds to the upper 
edge of the crack, cp = -n  corresponds to the lower edge and q~ = 0 is the line along which materials 
1 and 2 are joined. 

The solution of the plane strain problem can be represented in the form 

a(*) + iu(p~)2 = E rn+~+it f (k)(Cp) + E rnh~k)(cP) (1.2) pll 

~= ! in~2×,+~_l, × j = 3 - 4 v j ,  j = l , 2  
2rt lalx2 +g2 

where U(p~l ), and u(p~l) 2 are displacements perpendicular to the line of the crack and along it and f(~k)(q0), 
h~)(qo) are complex-valued functions. 

We will show below that although the form of the principal term of the singular component of the 
asymptotic expansion of U~a}n is identical in form with the principal term of expansion (1.1), in fact for 
weaker singularities in the three-dimensional problem, due to the dependence of the solution on the 
variable tangential to the crack contour, interaction of singularities of types (1.1) and (1.2) occurs, as 
a result of which the expansion of U~ka), includes both terms of the order o f r  n+l/2 and terms of the order 
o f r  n+3/2+~ (n = 0, 1, 2 . . . .  ). Here r is the distance to the crack contour. 

In exactly the same way the asymptotic series for the singular component of the displacement 
U~o~r begins with a term of the order of rl/2+'% which corresponds to the solution of plane strain 
problem (1.2), and moreover contains both terms of the order of r n+3/2+~ and terms of the order 
of r  n+3/2 (n = 0, 1, 2,...). 

There are two fundamental approaches to solving the problem of the form of the asymptotic expansion 
of the displacements and stresses in the vicinity of the crack contour. One of these is based on the 
construction of an analytical solution of some crack problem and its subsequent asymptotic expansion. 
Here it is necessary that the given particular solution should include the main properties of the general 
solution of the problem. 

The other approach is to consider the crack problem in the form of a half-plane. All the components 
of the displacement vector are represented in the form r~Oj(q~, z),  where x is a coordinate on the axis, 
directed along the crack front, (r, % z) are cylindrical coordinates andj indicates the component of the 
displacements. A solution of the equations of the theory of elasticity is sought which satisfies the 
conditions of strong adhesion at the interface of the materials and which gives zero loads on the crack 
surfaces. 

The first approach is difficult to use because there is an extremely limited number of analytically solved 
three-dimensional problems of interface cracks. Among these is the problem of a penny-shaped crack, 
to the surfaces of which uniform normal loads are applied [2, 3]. Expansions of the normal and radial 
displacements in this problem have the form (1.2) and do not contain half-integer powers of the distances 
to the periphery bounding the crack. However, since this problem is axisymmetric and the 
displacements in the tangential direction are zero, interaction of singularities of types (1.1) and (1.2) 
obviously cannot occur. A similar situation also arises for solutions of the problem of a penny-shaped 
crack, to the surfaces of which axisymmetric radial shear loads are applied [4]. 

There is also an analytical solution of another problem - a penny-shaped crack subject to the torsion 
loads [4]. In this problem the tangential component of the displacement vector is given by an asymptotic 
expansion of the form (1.1), but this stressed state is also not sufficiently general, since the radial 
displacement and the displacement normal to the plane of the crack in this case are zero. 

A solution of the problem of a penny-shaped crack, to the surfaces of which loads of a fairly general 
form are applied, was obtained in [5]. However, it is quite difficult to obtain from this the complete 
form of the asymptotic expansion in the vicinity of the crack front, since this solution is represented in 
a fairly complex form in terms of a Radon transformation. 
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In view of all this and in order to carry out a clearer investigation of the reasons why interaction of 
singularities of types (1.1) and (1.2) occur, we will use the second approach below to obtain the form 
of the asymptotic expansion of the solution. It should be noted here that if all the components of the 
displacement vector are sought in the form rZj*y(tO, t)  with the same exponent ~., nothing, apart from 
solutions of the plane and antiplane problems, can be obtained. The interaction of the singularities can 
be established if we represent the components of the displacements in the form rZj*y(tO, x) with different 
exponents )~j, in which case, as will be shown below, particular solutions of this type are obtained by 
slight modifications of the solutions of the antiplane and plane problems. 

2. S O L U T I O N  OF THE A N T I P L A N E  P R O B L E M  
AND ITS M O D I F I C A T I O N  

Suppose the crack is in the z = 0 plane and has the form of a half-plane occupying the region x < 0. 

We will denote the displacements in the x, y and z directions by u~ k), u~ k) and u(3 k) respectively, where 

the superscript (k) indicates, as above, the half-space being considered. Note that for this crack the 

displacements u] ~) are identical with U~o)r and the displacements u(2 k) are identical with- {~) u t a n .  

The problem of finding solutions of the equations of the theory of elasticity, which satisfy the 
homogeneous boundary conditions, is formulated as follows. The displacements satisfy Lame's equations 

a .5 . ,  + , a o " '  + au; ' ,  + a . 7 '  
I -  2v---- 7 ax---- 7- = o, 0 'k' = Ox oqy az (2.1) 

(1) (x / for j  = 1, 2, 3 correspond tox, y, z). We will assume that the functions uj (x,y, z) are defined m 
> f t l  (2 )  • the half-snace z 0, and the unc 'on u (x, y, z) is defined in the half-snace z < 0 Eauations (2 1) 

r j 1 7  ' " 1  • 

are then satisfied for k = 1 in the half-space z > 0 and for k = 2 in the half-space z < 0. 
The conditions for there to be no load on the crack surface can be written in the form 

Cr~])(x, y,O) (k) ,~(k)t~ =t~32 (x,y, 0)=v33 ~,, ,y,0)=0 for x < 0  

where o~)(j = 1, 2, 3) are the components of the stress tensor. 
The conditions for strong adhesion between the half-spaces outside the crack have the form 

(2.2) 

u~"(x,y,O)=u~2'(x,y,O), C~(x,y,O)=(r~21'(x,y,O) (2.3) 

forx > 0, j  = 1, 2,3. 
We briefly recall the solution of the antiplane problem, which is obtained if we put 

.I" =0, . 7 '  (x,z) 

We change to polar coordinates 

x=  rcos tp, z= rsin to, -r~ < to< 7t 

In these coordinates the upper half-space is defined by the conditions 0 < to < n and the lower half- 
space by the conditions -It < to < 0. The crack surfaces correspond to tO = - x and the interface of 
the materials corresponds to tO = 0. 

We will seek a solution in the form 

°~l)(r,q))=rXft(to), O~<(p~x; °(22)(r,(p)=rXf2(to),-It<~to<-O 

It then follows from Eq. (2.1) for j  = 2 that 

fk (to) = ql  c°s 2L~P + q2 sin Xto 

where Ckl and Ck2 are constants. 
Substituting these expressions into conditions (2.2) and (2.3) we obtain a system of four linear 

homogeneous equations 



1014 E.I .  Shifrin 

O(3z2)(r, ~)= O, O~'( r , -~)  = 0 

o~n(r,O ) =  o~2)(r,O), (I) - (2) 032 (r,O) - 032 (r,O) 

in the four unknowns Ckl and ck2 (k = 1, 2). 
In order for a non-zero solution of this system to exist its determinant must equal zero. From this 

condition we obtain the equality sin ~.n cos kn = 0, the roots of which are ~. = n and k = n + 1/2, where 
n are integers. From the condition that the energy must be finite it follows that n = 0, 1, 2 . . . . .  The 
roots k = n correspond to the regular part of the expansion of the solution of the antiplane problem, 
while the roots k = n + 1/2 correspond to the singular part. The eigenfunctions fl(tp) and f2(q~), 
corresponding to the value k = n + 1/2, have the form 

fj (tp) = 6". sin(n + ~)¢p, f2 (¢P) = Cn (~tl / ~t 2) sin(n + ~)tp 

where Cn is an arbitrary constant. 
Hence, the singular solutions of the antiplane problem of interest here have the form 

00) ~ n+~ 0(2) = C.(l.t  I / ~ t 2 ) r . + ~  s i n ( n +  i~)~ 0 .2  = un r  s i n ( n + ~ ) c p ,  " . 2  
(2.4) 

The subscript n for the displacements indicates which singular solution is in fact taken. 
We will now modify solutions (2.4) by constructing singular solutions of problem (2.1)-(2.3), in which 

the orders of the singularities of the displacements uq k) will be equal to  r n+3/2 (n = 0, 1, 2 . . . .  ). 
We will seek solutions of problem (2.1)-(2.3) in the form 

9.0) n u~2)(r,(p,y) (2) o(2) O) u(.l~(r,(p,y) = (u~ll)(r,(p),YUn2,~), = (u., ( r ,q) ) ,yu.2 ,  

We will choose the displacements U(n~ ) and u ~  so that 0 0) and  0 (2), as in the antiplane problem, 
remain equal to zero. In order to do this the conditions Ou~k)/Ox + u0~ k) = 0 must be satisfied, or in polar 
coordinates 

-~ (k) sin tp ~ (,) costp °u"l ou.i  . o(,) = 0 (2.5) - -  i"/An2 
Or r 0q~ 

Choosing the solutions of Eq. (2.5) in the form u~)/rYgk(q~ ), it can be shown that the solutions are 
the functions 

(I) = r . + ~  u,i -C , (n+3 /2 )  -I sin(n + 3/2)q) 

(2.6) 

(2) _C.(n+~)-I(~h 1 t l 2 ) r . * ~ s i n ( n + ~ ) t p  Unl = 

, 0 ( k ) ,  and u~)l(r, harmonic functions, Eqs (2.1) are obviously satisfied. Since 0 (k) = 0, ana u,2k-, 9) q~) are 
The satisfaction of conditions (2.2) and (2.3) can also be verified without difficulty. 

Hence it can be shown that the displacements 

( = ) _ .  (n ° ° )  0 ) ,  . ( 2 ) _ t , ( 2 7  . o ( 2 )  a~ 
U n --(Unl ,yUn2, u n --kUnl ,YUn2 ,u /  

where u~ k) are defined in (2.6) while u°~ k), defined in (2.4), are the solutions of boundary-value problem 
(2.1)-(2.3). Hence it follows that in the expansion of the displacements u~ ~) = U~o)r for arbitrary smooth 
loads terms of the order o f r  ~÷3/2 (n = 0, 1, 2 . . . .  ) must be present. 

Remark. One cannot construct a solution of problem (2.1)-(2.3), in which u(~ k) = 0, u(, k) = u(nk3 ) (r, ~), in the same 
way. In fact if we seek a solution in the form 

u(nk)(rAp, y)= O(k) (k) r (0,yu,2 ,u,3 (.~)) 
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and chose the displacements uky so that 8 @) = 0, the following equalities must be satisfied 

au$)/aZ+i$) =o, k= 1,2 (2.7) 

By virtue of the fact that 8 (‘) = 0 the stresses cr:k3) can be written in the form CT’,“: = 2~&(,k3/&. Hence and also 

from (2.7) it follows that &I= -2,.&u n2 . Since t!‘,i(r, n) and@y(r, -n) are non-zero, it is impossible to satisfy the ’ O(k) 

boundary conditions on the crack surface (cr::)(r, n) = 0, o$‘(r, -x) = 0). 
This remark, of course, does not prove that there are no half-integer powers of r in the expansion of the 

displacements $). Nevertheless, an analysis of the solution of the problem of a penny-shaped crack at the interface 
(4 of half-spaces, obtained previously [5], also shows that the expansion of II n+3/2 
3 does not contain terms of order r 

3. THE SOLUTION OF THE PLANE PROBLEM 
AND ITS MODIFICATION 

We will consider the same problem of a crack having the form of a half-plane as in Section 2. It is more 
convenient in this case to change to a cylindrical system of coordinates r, cp, y (X = r cos cp, z = r sin cp). 
Lame’s equations in a cylindrical system of coordinates take the form 

u~kL+~+~?!??=, 
I-2v, ar 

(3.1) 

Auik’ + ’ -- 
i-2& ay 

The components of the stress tensor occurring in the boundary conditions can be expressed in terms 
of the displacements as follows: 

u:) 
_-++-- 

r acp Jr r 

(3.2) 

The conditions for there to be no loads on the crack surfaces can be written in the form 

flpll(r.7Ly)=O, rgj(r,7t,y)=O, o~)(r,rr;,y)=O 

+$(r,--n,y)=O, Tz!(r,-rr,y)=O, CJf)(r,-_X,y)=O 

(3.3) 

Finally, the conditions for strong adhesion between the half-spaces outside the crack take the form 

u(‘)(r . I 0 1 y) = uc2)(r 7, 0 , y) 7 u(‘)(r 9. 0 Q y) - uc2)(r I, 0 -Q y) 

u(‘)(r 7 2 0 t y) = ui2)(r 77 0 y) , (3.4) 

o~‘(r,O,y) = dj’(r,O,y) 

The solution of the plane problem is obtained if we put 
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The singularities of the solution of the plane problem were investigated for the first time in [6], where 
the stress functions Vi@, cp) in the upper half-plane (0 6 cp c TC) and U,(r, cp) in the lower half-plane (-7~ 
G cp d 0) were considered. These were represented in the form U&-, q) = r”‘Fk((p) (k = 1, 2). Since 
the stress function must satisfy the biharmonic equation MUk = 0, the functions Fk(cp) have the form 

F’(q) = uk sin@ + l)cp + bk cos(h + I)cp + ck sin& - l)(p + dk cos0. - I)cp 

where ak, bk, ck, dk are constants. 
The components of the stress tensor can be expressed in terms of the stress function as follows: 

The components of the displacement vector can be written in the form 

(k) _ ’ 
UT - ~r’(-F”(q)-4(l -v,)[c, cos(k-l)cp-d, sin@- l)cpJ) 

k 

Jk) _ 
r -~rA(-(h+~)~~(~)+4(l-v~)[~~sin(h-l)rp+c~s(~-l)~]) 

k 

(3.6) 

The conditions for there to be no loads on the crack surfaces (3.3) by virtue of expressions (3.5) for 
the stresses, can be written in the form 

F;(n) = F;‘(n) = Q--n) = F;(-x) = 0 (3.7) 

The conditions for the forces-outside the crack (3.4) to be equal, from expressions (3.5) have the form 

F; (0) = F*(O), F;‘(O) = F;(O) (3.8) 

The conditions for the displacements outside the crack (3.8) to be equal, taking (3.6) into account, 
reduce to the equations 

-&-F;‘(O)-4(I-v,)c,]= &;(0)-4(1-v,)c,l 

~[-(h+‘)q(0)+4(‘-v,)d,l=~[-(I+‘)F,(0)+4(’-v,)d,l 
(3.9) 

Equations (3.7)-(3.9) represent eight linear homogeneous equations in the eight unknowns 
&, bk, ck, dk(k = 1, 2) which define the functions Fk(q). In order for a non-zero solution of this 
system to exist, its determinant must be equal to zero. From this condition it was found [6] that 
A = II + */z + ie (the quantity E is defined in (1.2)). These values of h only define the singular component 
of expansion (1.2). 

Using the techniques of the theory of functions of a complexvariable it was established in [7] that the expansion 
of the solution of the plane problem has the form (1.2). 

The results obtained in [6] were refined in [8] by a more accurate calculation of the determinant of system of 
equations (3.7)-(3.9). In particular, it was established that the equation obtained by equating the determinant of 
the system to zero, in addition to complex roots, also has roots h = n. All the values of h corresponding to expansion 
(1.2) obtained in [7], were derived by the same methods as in (61. In addition, the coefficients uk, bk, ck, dk, defining 
the eigenfunctions F,(q), were calculated in [8]. 

We will denote the solution of the plane problem corresponding to h = n + ‘/2 + ie by i’,“!(r, cp), $,,(r, 
cp), and the eigenfunctions corresponding to this root by F&((P). By the results obtained previously [8] 
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e ~E + (n + ~ + ie)e -hE e ~t - (n + ~ + iE)e - '~ 
a.; = iM.  n + 3/2 + ie , bn~ = M .  n + 3/2 + i~ 

e - = t  + ( n  + ~ + i e ) e  ~ 
c.~ = - i M n e  -~¢, d m = Mne - '~ ,  an2 = iM.  

n + a/2 + ie 

e -  n~ ~ / . .  rt~ - ( n  + )~ + te)e 
b.2 = M n , cn2 = - i M n e  n~, dn2 = M . e  nt 

n + 3/2 + iE 

(3.10) 

The subscript n indicates to which eigenfunctions the constants correspond, and M,  are arbitrary 
constants. 

We will now modify the solution of the plane problem by constructing the singular solutions of 
problem (3.1)-(3.3), in which the orders of the singularities of the displacement u~ k) are equal to 
r n+~2+ie (n = 0, 1, 2 . . . .  ). We will seek solutions of problem (3.1)-(3.3) in the form 

u(I)( r , (p,  . _ .  (i) (I) , (I)~ o(]) o0) o) 
yJ - tu .~,  u .~, , . .2  J = (Y Unr (r, q)). y u.~ (r, (p). un2 (r, (p)) 

u~2)(r,(p,y) . ( 2 ) ( 2 ) ( 2 ) .  . g~2r ) ( r , (p )  ' 0(2). = [Unr .Untp .Un2 ) = tY y u , (  p t r . ( p ) ,  ut2)(r, tp)) 

It can be shown that for the chosen form of the displacements u~)(r,  % y) the equality 0 (k) = yS(k) 
holds, where 8(n k) is the value of the first invariant of the strain tensor for the corresponding plane 
problem. The following equalities also hold 

= y{  A - --~ )u,, ,  , -~-f )u,,~ : yL A - T f  )u,,p 

(k) ". O(k) "x (k) "~ O(k) 
Unr 0 Unr Obln~ = Ol~n~ 
~(p =Y " ~  ' ~---~ Y ~'-"-~ 

Hence it follows that the first and second of Eqs (3.1) will be satisfied. 
It follows from the first and third expressions of (3.2) that -~0r+(k) = yO~! and o~  ) = y~),0 k where x°¢)(pr and 

o~) are the stresses in the corresponding plane problem. Hence it follows that the first, third, fourth 
and sixth equations of (3.3) are satisfied, and also the fourth and sixth equations of (3.4). In addition 
it is obvious that the first and second equalities of (3.4) are satisfied. 

Consequently, to solve problem (3.1)-(3.3) we need to chose the functions u~)2(r, (p) so as to satisfy 
the third of equations (3.1) and also the boundary conditions 

.c(1), ( 2 )  ( i )  _ ( 2 ) ¢ r . 0  ~ytr ,  n , y ) = ' ~ p y ( r , - - ~ , y ) = O ,  U n 2 ( r , O ) - - U n 2 ,  . ) 

;(I) IF (2) ~,y, ,n,y) = X~y (r,0,y) 

Since 0 (~) = yS(~ ), the third of equations (3.1) takes the form 

An.2 (r ,(p)-  _. 
I - 2 v  k 

From expressions (3.5) for ~(~)and ~ )  and since 2gk ~](~)/(1 - 2vk) = ~{~) + o~), we have 

= ,-2v  .... ( 3 . )  
, 2l'tk r [r.k(tp)+ n + . ~ + t E  F~k(q)) ] 

(3.11) 

(3.12) 

Now taking into account the form of the functions Fnk(q)) we obtain 

n = n+ + (p+dnk (p 21.tk teJr  [c.,sin n - - ~ +  ie cos n - I +  i~ 

The values of the constants cnk and d.k are given in (3.10). 

(3.13) 
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Substituting (3.13) into (3.12) and seeking a particular solution of (3.12) in the form U(q k) = r~Ok((p), 
it can be shown that the following functions are particular solutions 

= r (Gksin n -  +ie ~ + d ,  kcos n -  +ie  g~) 
2gk 

If we add an arbitrary harmonic function to this particular solution, the new function will also satisfy 
Eq. (3.12). 

Consider solutions of Eq. (3.12) having the form 

.(,) I n+~+,cr., sin(n+3+iE~(p+ Bn, cos(n+3+iE~(p_ = r LI/tnk 
u~ 2~t~ t T J  
-c,l s in(n-I+i~)  ( p - j d n t 2  c ° s ( n -  / + i ~ 3 ( P ] 2  (3.14) 

where An~, B~ (k = 1, 2) are constants. 
Conditions (3.11) represent four equations from which we can determine the four unknown constants 

An~, B,~ (k = 1, 2). Using (3.14) the condition u(~(r, O) = u~(r, 0) leads to the equation 

B,~ - d,____________~ = B,2 - d,____________~ 2 (3.15) 
la~ ~2 

Taking expression (3.2) for Z~y ) into account, we have 

• ¢O(k) I OUn2 -~ (k)X~l 
"~Y-('' = P " ~  un~ +r o3(1) ) 

Hence also from (3.6) and (3.14) we obtain 

, /( 3 _lk) _ (p _ X~y 2 [-F£'((P)+( n+3+i~.\iAn'cOs(n+'2 +i~] 

-B,,, sin(n + 3 + /El (P3- [4(1-  v / ~ 2  ) + n - l + i E ]  x 2  

From the condition (1) x(~(r, (3.16) (3.8) we x ~. (r, O, y) = O, y), and obtain 

n+3+i~ iAnl- ×t+n+l--+iE2 c"l= n+ +iE iA,2- ×2+n+--+ig2 cn2 

The quantities ×1, ×2 in (3.17) were defined in Section 1. 
Substituting the value g~ = rc when k = 1 and q~ = - n  when k = 2 into Eq. (3.16) and taking the 

equalities z~(r,  ~, y) - (2) _ , - O, ~ ~ (r, -r~,y) = 0 and F'~ 1 (n) - 0, F ~2(-n) = 0 into account and also expressions 
(3.10) we obtain 

( 3 )l + B ~ l e - C n e i ( " + ~ ) = + - -  n + -- + iE "Anl 
2 2 

+M,(×  I +n+2+iEle-'(n-~)x = 0  

( _3 + ie )( A,2 -Bn2e-~e'(~+~)~ 
n+ 2 2 + 

+M , (×  2 +n+l+iE)e '("-~'n = 0  

A.I - Bnl eer¢e-t(n+~)n ~ + 
) 2 

An2 +2 Bn2 etne-i("+~)= I + 
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These equations can be rewritten in the simpler form 

e t~ - M .  × l + n +  + i e  = 0  ( 3 . 1 8 )  
2 2 

) ( l )  n + + ie A~2 B~2 e -ere An2 + B~2 e ~ + Mn ×2 + n + - -  + ie = 0 
2 2 

(3.19) 

Solving system of equations (3.15) and (3.17)-(3.19) we find 

-en = _O~nle + ~Jnl e An I = O~nle + ~nleen, Bn I - ~  en 

A,, 2 = a,12 e-E~ + ~n2 e ~ ,  B,~2 = O~n2 e-err - ~ .2e  ~ 

where 

(×2 - I)~tt ee~ - ( × l  -I)P-2 e-E~ , [3nl = ~ .2  
O~nz = Mn ( n + 3/2 + i~ )( e ~ - e -En )(~q + ~t z ) 

~.2 = ~ . 2  - M n  X2 + n + ~ + i e .  n + ~ + i e  ' ( x " t = c x n 2 - M " × l n + 3 / 2  +ie+n+~+ie 

Hence ,  we have ob t a ined  a sequence  of  s ingular  solut ions  of  p r o b l e m  (3.1)-(3 .3)  in which the 

d isp lacements  u~)2(r, (p) = u" (k)tan have singulari t ies of  o rde r  r ~+3/2+'E (n = 0, 1, 2 . . . .  ). Here ,  for  convenience,  
we have cons ide red  complex-va lued  solut ions,  but  clearly if we take thei r  real  or  imaginary  par ts  we 
can ob ta in  rea l  so lu t ions  with the o rde r s  of  the s ingular i t ies  indicated.  

I t  follows f rom the resul ts  ob t a ined  that  the  expans ions  of  the d i sp lacement s  in the  vicinity of  the  
smoo th  crack  con tour  have the form 

Utan(r ,q) ,X)=~ r Yn(q), x) 2. Kerr  g n ( q ) , x ) ) + ~  r h.(~o,x) 

. + ~ + , E  . . . . . .  +~ . . , 
u3(r,q), 'Q+iUnor(r,q), 'O=Y~ r l n ( ( p , z ) + t L  r gn(q), 'O+Y~ r hn((p,z) 

Here x is a parameter which defines the position of a point on the crack contour and (r, (p) are the 
polar coordinates in the plane passing through a given point on the contour, taken as the origin of 
coordinates, and orthogonal to 0G. The functions f,~(q), x), h;,(q0, x), g,(~0, z) are real-valued, while the 
functions g~((p, z), f~(~0, ~) and hn(q), z) are complex-valued. 
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